AIRR - ANZCA Institutional Research Repository
Skip navigation
Please use this identifier to cite or link to this item: https://hdl.handle.net/11055/208
Title: DNA testing for malignant hyperthermia: the reality and the dream.
Authors: Stowell, Kathryn M
Issue Date: Feb-2014
Source: Anesthesia and analgesia 2014-02; 118(2): 397-406
Abstract: The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.
URI: http://hdl.handle.net/11055/208
Appears in Collections:Scholarly and Clinical

Show full item record

Page view(s)

18
checked on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.