AIRR - ANZCA Institutional Research Repository
Skip navigation
Please use this identifier to cite or link to this item:
Title: Antiepileptic drugs for chronic non-cancer pain in children and adolescents.
Authors: Cooper TE
Wiffen PJ
Heathcote LC
Clinch J
Howard R
Krane E
Lord SM
Sethna N
Schechter N
Wood C
Keywords: amines/adverse effects
amines/therapeutic use
amitriptyline/adverse effects
amitriptyline/therapeutic use
anticonvulsants/adverse effects
anticonvulsants/therapeutic use
Chronic Pain
complex regional pain syndromes/drug therapy
cyclohexanecarboxylic acids/adverse effects
cyclohexanecarboxylic Acids/therapeutic use
fibromyalgia/drug therapy
neuralgia/drug therapy
pregabalin/adverse effects
pregabalin/therapeutic use
gamma-Aminobutyric Acid/adverse effects
gamma-Aminobutyric Acid/therapeutic use
Issue Date: 5-Aug-2017
Source: 8:CD01253.
Abstract: BACKGROUND: Pain is a common feature of childhood and adolescence around the world, and for many young people, that pain is chronic. The World Health Organization (WHO) guidelines for pharmacological treatments for children's persisting pain acknowledge that pain in children is a major public health concern of high significance in most parts of the world. While in the past, pain was largely dismissed and was frequently left untreated, views on children's pain have changed over time, and relief of pain is now seen as importantWe designed a suite of seven reviews on chronic non-cancer pain and cancer pain (looking at antidepressants, antiepileptic drugs, non-steroidal anti-inflammatory drugs, opioids, and paracetamol) in order to review the evidence for children's pain utilising pharmacological interventions in children and adolescents.As the leading cause of morbidity in the world today, chronic disease (and its associated pain) is a major health concern. Chronic pain (that is pain lasting three months or longer) can occur in the paediatric population in a variety of pathophysiological classifications (nociceptive, neuropathic, or idiopathic) relating to genetic conditions, nerve damage pain, chronic musculoskeletal pain, and chronic abdominal pain, and for other unknown reasons.Antiepileptic (anticonvulsant) drugs, which were originally developed to treat convulsions in people with epilepsy, have in recent years been used to provide pain relief in adults for many chronic painful conditions and are now recommended for the treatment of chronic pain in the WHO list of essential medicines. Known side effects of antiepileptic drugs range from sweating, headache, elevated temperature, nausea, and abdominal pain to more serious effects including mental or motor function impairment. OBJECTIVES: To assess the analgesic efficacy and adverse events of antiepileptic drugs used to treat chronic non-cancer pain in children and adolescents aged between birth and 17 years, in any setting. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online, MEDLINE via Ovid, and Embase via Ovid from inception to 6 September 2016. We also searched the reference lists of retrieved studies and reviews as well as online clinical trial registries. SELECTION CRITERIA: Randomised controlled trials, with or without blinding, by any route, treating chronic non-cancer pain in children and adolescents, comparing any antiepileptic drug with placebo or an active comparator. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility. We planned to use dichotomous data to calculate risk ratio and number needed to treat for one additional event, using standard methods if data were available. We assessed the evidence using GRADE and created two 'Summary of findings' tables. MAIN RESULTS: We included two studies with a total of 141 participants (aged 7 to 18 years) with chronic neuropathic pain, complex regional pain syndrome type 1 (CRPS-I), or fibromyalgia. One study investigated pregabalin versus placebo in participants with fibromyalgia (107 participants), and the other study investigated gabapentin versus amitriptyline in participants with CRPS-I or neuropathic pain (34 participants). We were unable to perform any quantitative analysis.Risk of bias for the two included studies varied, due to issues with randomisation (low to unclear risk), blinding of outcome assessors (low to unclear risk), reporting bias (low to unclear risk), the size of the study populations (high risk), and industry funding in the 'other' domain (low to unclear risk). We judged the remaining domains of sequence generation, blinding of participants and personnel, and attrition as low risk of bias. Primary outcomesOne study (gabapentin 900 mg/day versus amitriptyline 10 mg/day, 34 participants, for 6 weeks) did not report our primary outcomes (very low-quality evidence).The second study (pregabalin 75 to 450 mg/day versus placebo 75 to 450 mg/day, 107 participants, for 15 weeks) reported no significant change in pain scores for pain relief of 30% or greater between pregabalin 18/54 (33.3%), and placebo 16/51 (31.4%), P = 0.83 (very low-quality evidence). This study also reported Patient Global Impression of Change, with the percentage of participants feeling "much or very much improved" with pregabalin 53.1%, and placebo 29.5% (very low-quality evidence).We downgraded the evidence by three levels to very low for one of two reasons: due to the fact that there was no evidence to support or refute the use of the intervention, or that there were too few data and the number of events was too small to be meaningful. Secondary outcomesIn one small study, adverse events were uncommon: gabapentin 2 participants (2 adverse events); amitriptyline 1 participant (1 adverse event) (6-week trial). The second study reported a higher number of adverse events: pregabalin 38 participants (167 adverse events); placebo 34 participants (132 adverse events) (15-week trial) (very low-quality evidence).Withdrawals due to adverse events were infrequent in both studies: pregabalin (4 participants), placebo (4 participants), gabapentin (2 participants), and amitriptyline (1 participant) (very low-quality evidence).Serious adverse events were reported in both studies. One study reported only one serious adverse event (cholelithiasis and major depression resulting in hospitalisation in the pregabalin group) and the other study reported no serious adverse events (very low-quality evidence).There were few or no data for our remaining secondary outcomes (very low-quality evidence).We downgraded the evidence by three levels to very low due to too few data and the fact that the number of events was too small to be meaningful. AUTHORS' CONCLUSIONS: This review identified only two small studies, with insufficient data for analysis.As we could undertake no meta-analysis, we were unable to comment about efficacy or harm from the use of antiepileptic drugs to treat chronic non-cancer pain in children and adolescents. Similarly, we could not comment on our remaining secondary outcomes: Carer Global Impression of Change; requirement for rescue analgesia; sleep duration and quality; acceptability of treatment; physical functioning; and quality of life.We know from adult randomised controlled trials that some antiepileptics, such as gabapentin and pregabalin, can be effective in certain chronic pain conditions.We found no evidence to support or refute the use of antiepileptic drugs to treat chronic non-cancer pain in children and adolescents.
DOI: 10.1002/14651858.CD012536.pub2
PubMed URL:
Journal Title: The Cochrane database of systematic reviews
Type: Journal Article
Study/Trial: Randomized Controlled Clinical Trial/Controlled Clinical Trial
Appears in Collections:Scholarly and Clinical

Show full item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.